已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t
2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程
的根的个数.
考点分析:
相关试题推荐
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合计 | 50 | 1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
查看答案
已知向量
=(sinA,cosA),
=(
,-1),
•
=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案
f(x)=ax
3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=
.
查看答案
设a∈{1,2,3,4},b∈{2,4,8,12},则函数f(x)=x
3+ax-b在区间[1,2]上有零点的概率为
.
查看答案