满分5 > 高中数学试题 >

过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A...

过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则manfen5.com 满分网=   
作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得xA+xB和xAxB的表达式,进而可求得xAxB=-()2,整理后两边同除以xB2得关于的一元二次方程,求得的值,进而求得. 【解析】 如图,作AA1⊥x轴, BB1⊥x轴. 则AA1∥OF∥BB1, ∴==, 又已知xA<0,xB>0, ∴=-, ∵直线AB方程为y=xtan30°+ 即y=x+, 与x2=2py联立得x2-px-p2=0 ∴xA+xB=p,xA•xB=-p2, ∴xAxB=-p2=-()2 =-(xA2+xB2+2xAxB) ∴3xA2+3xB2+10xAxB=0 两边同除以xB2(xB2≠0)得 3()2+10+3=0 ∴=-3或-. 又∵xA+xB=p>0, ∴xA>-xB, ∴>-1, ∴=-=-(-)=. 故答案为:
复制答案
考点分析:
相关试题推荐
设等比数列{an}的前n项和为an,若manfen5.com 满分网=3,则manfen5.com 满分网=    查看答案
manfen5.com 满分网的最大值是    查看答案
设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为manfen5.com 满分网,则a=    查看答案
已知双曲线manfen5.com 满分网的右焦点为F,P是右支上任意一点,以P为圆心,PF长为半径的圆在右准线上截得的弦长恰好等于|PF|,则θ的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.