满分5 > 高中数学试题 >

四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,...

四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,manfen5.com 满分网,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C-AD-E的大小.

manfen5.com 满分网
(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的. (2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小. 【解析】 (1)取BC中点F,连接DF交CE于点O, ∵AB=AC,∴AF⊥BC, 又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE. ,∴∠OED+∠ODE=90°, ∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD. (2)在面ACD内过C点作AD的垂线,垂足为G. ∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD, 则∠CGE即为所求二面角的平面角., ,,, 则, ∴, 即二面角C-AD-E的大小.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
查看答案
求函数y=sin4x+2manfen5.com 满分网sinxcosx-cos4x的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.
查看答案
过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则manfen5.com 满分网=    查看答案
设等比数列{an}的前n项和为an,若manfen5.com 满分网=3,则manfen5.com 满分网=    查看答案
manfen5.com 满分网的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.