满分5 > 高中数学试题 >

如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2...

如图,已知直线L:manfen5.com 满分网的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线manfen5.com 满分网的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若manfen5.com 满分网为x轴上一点,求证:manfen5.com 满分网

manfen5.com 满分网
(1)先由已知得b=以及c=1,即可求出椭圆C的方程; (2)(理科生做)先让m取0,求出点N的坐标,再猜想:当m变化时,AE与BD相交于此定点N.先利用斜率相等证明A、N、E三点共线同理可得B、N、D三点共线,即可证明结论. (文科生做)直接求直线AN和直线NE的斜率,利用上面的过程得到二者斜率相等即可证明结论. 【解析】 (1)易知b=⇒b2=3, 又F(1,0),c=1,∴a2=b2+c2=4. 所以椭圆C的方程为:=1. (2)(理科生做)因为F(1,0),k=(a2,0) 先探索,当m=0时,直线L⊥ox轴,则ABED为矩形,由对称性知,AE与BD相交于FK中点N,且 猜想:当m变化时,AE与BD相交于定点. 证明:设设A(x1,y1),B(x2,y2),E(a2,y2),D(a2,y1), 当m变化时首先AE过定点N. 由⇒(a2+b2m2)y2+2mb2y+b2(1-a2)=0.△4a2b2(a2+m2b2-1)>0,(因为a>1) 且.y1+y2=-   ①,y1•y2=    ②. 因为KAN=,KEN=, 所以kAN-KEN=    ③, 把①②代入③整理得KAN-KEN=0. ∴KAN=KEN∴A、N、E三点共线同理可得B、N、D三点共线 ∴AE与BD相交于定点. (文科生做).直接求出直线AN和直线NE的斜率,利用上面的推导过程可以得到二者斜率相等,故A、N、E三点共线.即可得:.
复制答案
考点分析:
相关试题推荐
袋子A和B中分别装有若干个质地均匀,大小相同的红球和白球,从A中摸出一个球,得到红球的概率是manfen5.com 满分网,从B中摸出一个球,得到红球的概率为p.
(Ⅰ)若A,B两个袋子中的球数之比为1:3,将A,B中的球混装在一起后,从中摸出一个球,得到红球的概率是manfen5.com 满分网,求p的值;
(Ⅱ)从A中有放回地摸球,每次摸出一个,若累计三次摸到红球即停止,最多摸球5次,5次之内(含5次)摸到红球的次数为随机变量ξ,求随机变量ξ的分布列及数学期望.
查看答案
manfen5.com 满分网如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,manfen5.com 满分网,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离.
查看答案
已知在锐角△ABC中,角A,B,C,的对边分别为a,b,c,且manfen5.com 满分网
(1)求∠B;(2)求函数manfen5.com 满分网的最小值及单调递减区间.
查看答案
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有manfen5.com 满分网种取法.在这manfen5.com 满分网种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是取出m-1个白球,1个黑球,共有manfen5.com 满分网,即有等式:manfen5.com 满分网成立.试根据上述思想化简下列式子:manfen5.com 满分网=    .(1≤k<m≤n,k,m,m∈N). 查看答案
小张正在玩“QQ农场”游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种在4块不同的空地上(每块空地只能种一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有    种.(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.