满分5 > 高中数学试题 >

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+...

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
(1)把点P代入直线方程,可得an+1-an=1进而判断数列{an}是以1为首项,1为公差的等差数列数列{an}的通项公式可得. (2)分别表示出f(n)和f(n+1),通过f(n+1)-f(n)>0判断f(n)单调递增,故f(n)的最小值是 (3)把(1)中的an代入求得bn,进而求得最后(n-1)Sn-1-(n-2)Sn-2=nSn-n=n(Sn-1),判断存在关于n的整式g(x)=n. 【解析】 (1)由点P(an,an+1)在直线x-y+1=0上, 即an+1-an=1,且a1=1,数列{an}是以1为首项, 1为公差的等差数列an=1+(n-1)•1=n(n≥2), a1=1同样满足,所以an=n (2) 所以f(n)是单调递增,故f(n)的最小值是 (3),可得, nSn-(n-1)Sn-1=Sn-1+1, (n-1)Sn-1-(n-2)Sn-2=Sn-2+1S2-S1=S1+1nSn-S1 =S1+S2+S3++Sn-1+n-1S1+S2+S3++Sn-1 =nSn-n=n(Sn-1),n≥2g(n)=n 故存在关于n的整式g(x)=n, 使得对于一切不小于2的自然数n恒成立.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网.(1)如果a=1,点p为曲线y=f(x)上一个动点,求以P为切点的切线其斜率取最小值时的切线方程;
(2)若x∈[a,3a]时,f(x)≥0恒成立,求a的取值范围.
查看答案
如图,已知直线L:manfen5.com 满分网的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线manfen5.com 满分网的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若manfen5.com 满分网为x轴上一点,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
袋子A和B中分别装有若干个质地均匀,大小相同的红球和白球,从A中摸出一个球,得到红球的概率是manfen5.com 满分网,从B中摸出一个球,得到红球的概率为p.
(Ⅰ)若A,B两个袋子中的球数之比为1:3,将A,B中的球混装在一起后,从中摸出一个球,得到红球的概率是manfen5.com 满分网,求p的值;
(Ⅱ)从A中有放回地摸球,每次摸出一个,若累计三次摸到红球即停止,最多摸球5次,5次之内(含5次)摸到红球的次数为随机变量ξ,求随机变量ξ的分布列及数学期望.
查看答案
manfen5.com 满分网如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,manfen5.com 满分网,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离.
查看答案
已知在锐角△ABC中,角A,B,C,的对边分别为a,b,c,且manfen5.com 满分网
(1)求∠B;(2)求函数manfen5.com 满分网的最小值及单调递减区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.