满分5 > 高中数学试题 >

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,...

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网
以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系. (1)表示,,计算,就证明PE⊥BC. (2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量, 求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值. 【解析】 以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长, 建立空间直角坐标系如图,则A(1,0,0),B(0,1,0) (Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0) 则 可得 因为 所以PE⊥BC. (Ⅱ)由已知条件可得 设n=(x,y,z)为平面PEH的法向量 则即 因此可以取, 由, 可得 所以直线PA与平面PEH所成角的正弦值为.
复制答案
考点分析:
相关试题推荐
某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段[40,50)[50,60)…[90,100)下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从60名学生随机抽取2名,抽到的学生成绩在[40,70)记0分,在[70,100)记1分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<manfen5.com 满分网,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,manfen5.com 满分网]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案
已知m,n,s,t∈R+,m+n=2,manfen5.com 满分网,其中m、n是常数,当s+t取最小值manfen5.com 满分网时,m、n对应的点(m,n)是双曲线manfen5.com 满分网一条弦的中点,则此弦所在的直线方程为    查看答案
已知△ABC的斜二测直观图是边长为2的等边△A1B1C1,那么原△ABC的面积为    查看答案
manfen5.com 满分网展开式的常数项是    .(结果用数值作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.