满分5 > 高中数学试题 >

已知函数R),g(x)=lnx. (1)求函数F(x)=f(x)+g(x)的单调...

已知函数manfen5.com 满分网R),g(x)=lnx.
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程manfen5.com 满分网(e为自然对数的底数)只有一个实数根,求a的值.
(1)先求出求函数F(x)=f(x)+g(x)的导函数,分情况求出导数为0的根进而求出函数的单调区间(注意是在定义域内求单调区间); (2)先把问题转化为只有一个实数根;再利用导函数分别求出等号两端的极值,在下面画出草图,结合草图即可求出结论. (1)【解析】 函数的定义域为(0,+∞). ∴=. ①当△=1+4a≤0,即时,得x2+x-a≥0,则F′(x)≥0. ∴函数F(x)在(0,+∞)上单调递增.(2分) ②当△=1+4a>0,即时,令F′(x)=0,得x2+x-a=0, 解得. (ⅰ)若,则. ∵x∈(0,+∞),∴F′(x)>0, ∴函数F(x)在(0,+∞)上单调递增.(4分) (ⅱ)若a>0,则时,F′(x)<0;时,F′(x)>0, ∴函数F(x)在区间上单调递减,在区间上单调递增. 综上所述,当a≤0时,函数F(x)的单调递增区间为(0,+∞); 当a>0时,函数F(x)的单调递减区间为, 单调递增区间为.(8分) (2)【解析】 由,得,化为. 令,则. 令h′(x)=0,得x=e. 当0<x<e时,h′(x)>0;当x>e时,h′(x)<0. ∴函数h(x)在区间(0,e)上单调递增,在区间(e,+∞)上单调递减. ∴当x=e时,函数h(x)取得最大值,其值为.(10分) 而函数m(x)=x2-2ex+a=(x-e)2+a-e2, 当x=e时,函数m(x)取得最小值,其值为m(e)=a-e2.(12分) ∴当,即时,方程只有一个根.(14分)
复制答案
考点分析:
相关试题推荐
已知可行域manfen5.com 满分网的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率manfen5.com 满分网
(1)求圆C及椭圆C1的方程;
(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线manfen5.com 满分网于点Q,判断直线PQ与圆C的位置关系,并给出证明.
查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段[40,50)[50,60)…[90,100)下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从60名学生随机抽取2名,抽到的学生成绩在[40,70)记0分,在[70,100)记1分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<manfen5.com 满分网,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,manfen5.com 满分网]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案
已知m,n,s,t∈R+,m+n=2,manfen5.com 满分网,其中m、n是常数,当s+t取最小值manfen5.com 满分网时,m、n对应的点(m,n)是双曲线manfen5.com 满分网一条弦的中点,则此弦所在的直线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.