满分5 > 高中数学试题 >

已知双曲线的焦点为F1、F2,点M在双曲线上且MF1⊥x轴,则F1到直线F2M的...

已知双曲线manfen5.com 满分网的焦点为F1、F2,点M在双曲线上且MF1⊥x轴,则F1到直线F2M的距离为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
根据双曲线的方程可得双曲线的焦点坐标,根据MF1⊥x轴进而可得M的坐标,则MF1可得,进而根据双曲线的定义可求得MF2. 【解析】 已知双曲线的焦点为F1、F2, 点M在双曲线上且MF1⊥x轴,M(3,,则MF1=, 故MF2=, 故F1到直线F2M的距离为. 故选C.
复制答案
考点分析:
相关试题推荐
如图是一个算法的程序框图,当输入x的值为-9时,其输出的结果是( )
manfen5.com 满分网
A.9
B.3
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知正方形的四个顶点分别为O(0,0),A(2,0),B(2,2),C(0,2),直线y=1-2x与x轴、y轴围成的区域为M.在正方形OABC内任取一点P,则点P恰好在区域M内的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β、那么( )
A.①是真命题,②是假命题
B.①是假命题,②是真命题
C.①②都是真命题
D.①②都是假命题
查看答案
已知manfen5.com 满分网,则cos2α的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若(1-i)(a-i)是纯虚数,则实数a=( )
A.1
B.-1
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.