满分5 > 高中数学试题 >

已知函数,其中x∈R,θ为参数,且0≤θ≤. (Ⅰ)当cosθ=0时,判断函数f...

已知函数manfen5.com 满分网,其中x∈R,θ为参数,且0≤θ≤manfen5.com 满分网
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(II)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
(1)先求函数的导数,f′(x)>0在(-∞,+∞)上恒成立,得到函数的单调性,从而可判定是否有极值. (2)先求出极值点,f′(x)=0的点附近的导数的符号的变化情况,来确定极值,求出极小值,使函数f(x)的极小值大于零建立不等关系,求出参数θ的取值范围即可. (3)由(II)知,函数f(x)在区间(-∞,0)与内都是增函数,只需(2a-1,a)是区间(-∞,0)与的子集即可. 【解析】 (I)【解析】 当cosθ=0时,则f(x)在(-∞,+∞)内是增函数, 故无极值. (II)【解析】 f'(x)=12x2-6xcosθ,令f'(x)=0, 得. 由及(I),只需考虑cosθ>0的情况. 当x变化时,f'(x)的符号及f(x)的变化情况如下表:  x  (-∞,0)  0 (0,)    ()   f'(x) +  0  -  0 +  f(x)  递增  极大值  递减  极小值  递增 因此,函数f(x)在处取得极小值,且. 要使,必有, 可得,所以 (III)【解析】 由(II)知,函数f(x)在区间(-∞,0)与内都是增函数. 由题设,函数f(x)在(2a-1,a)内是增函数, 则a须满足不等式组或 由(II),参数时,.要使不等式关于参数θ恒成立,必有. 综上,解得a≤0或. 所以a的取值范围是.
复制答案
考点分析:
相关试题推荐
定义在R上的奇函数f(x)有最小正周期为2,且x∈(0,1)时,manfen5.com 满分网
(1)求f(x)在[-1,1]上的解析式;
(2)判断f(x)在(0,1)上的单调性;
(3)当λ为何值时,方程f(x)=λ在x∈[-1,1]上有实数解.
查看答案
manfen5.com 满分网如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1中点,∠A1DE=90°.
(I)求证:CD⊥平面A1ABB1
(II)求二面角C-A1E-D的大小.
查看答案
已知函数f(x)=loga(x2-4ax+3a2)(a>0,a≠1).
(I)求函数f(x)的定义域;
(II)若f(x)在区间[a+2,a+3]上满足|f(x)|≤1,试确定a的取值范围.
查看答案
在某次趣味运动会中,甲、乙、丙三名选手进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为manfen5.com 满分网,甲胜丙的概率为manfen5.com 满分网,乙胜丙的概率为manfen5.com 满分网
(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;
(Ⅱ)求三人得分相同的概率;
(Ⅲ)设在该小组比赛中甲得分数为ξ,求Eξ.
查看答案
设函数f(x)=ax+2,不等式|f(x)|<6的解集为(-1,2),试求不等式manfen5.com 满分网≤1的解集.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.