满分5 > 高中数学试题 >

已知椭圆,A1、A2、B是椭圆的顶点(如图),直线l与椭圆交于异于椭圆顶点的P、...

已知椭圆manfen5.com 满分网,A1、A2、B是椭圆的顶点(如图),直线l与椭圆交于异于椭圆顶点的P、Q两点,且l∥A2B.若此椭圆的离心率为manfen5.com 满分网,且manfen5.com 满分网
(I)求此椭圆的方程;
(II)设直线A1P和直线BQ的倾斜角分别为α、β,试判断α+β是否为定值?若是,求出此定值;若不是,请说明理由.

manfen5.com 满分网
(I)根据椭圆的离心率求得a和c的关系,利用勾股定理求得a和b的关系式,最后联立求得a和b,则椭圆的方程可得. (II)由(I)可值A2(2,0),B(0,1),利用l∥A2B,求得直线l的斜率,设出直线l的方程,与椭圆的方程联立,消去y,利用韦达定理表示出x1+x2和x1+x2,然后分别表示出tanα和tanβ,令二者相加,化简整理求得结果为0,进而可利用正切的两角和公式求得tan(α+β)=0,判断出α+β=π是定值. 【解析】 (I)由已知可得 ,求得a=2,b=1 ∴椭圆方程为 (II)α+β是定值π. 由(I)A2(2,0),B(0,1),且l∥A2B,所以直线l的斜率k=-, 设直线l的方程为y=-x+m,P(x1,y1),Q(x2,y2), ,x2-2mx+2m2-2=0 ∴△=4m2-4(2m2-2)=8-4m2≥0,即≤m≤ ∵P、Q两点不是椭圆的顶点∴、 ∴, 又因为, = = ∴,又α,β∈(0,π) ∴α+β∈(0,2π)∴α+β=π是定值
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+bx+4在(-∞,0)上是增函数,在(0,1)上是减函数.
(Ⅰ)求b的值;
(Ⅱ)当x≥0时,曲线y=f(x)总在直线y=a2x-4上方,求a的取值范围.
查看答案
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,
点E在CC1上,且A1C⊥平面BED
(Ⅰ)证明; C1E=3EC
(Ⅱ)求二面角A1-DE-B的大小.

manfen5.com 满分网 查看答案
射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,中两个飞靶得2分,中一个飞靶得1分,不中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为manfen5.com 满分网,第二枪命中率为manfen5.com 满分网,该运动员如进行2轮比赛,求:
( I)该运动员得4分的概率为多少;
(Ⅱ)该运动员得几分的概率为最大?并说明你的理由.
查看答案
在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知manfen5.com 满分网
(Ⅰ)求sinC;
(Ⅱ)当c=2a,且manfen5.com 满分网时,求a.
查看答案
已知各项均为正数的数列{an}的首项a1=1,且log2an+1=log2an+1,
数列{bn-an}是等差数列,首项为1,公差为2,其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.