满分5 > 高中数学试题 >

已知f(x)=x2+bx+2,x∈R. (1)若函数F(x)=f[f(x)]与f...

已知f(x)=x2+bx+2,x∈R.
(1)若函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,求b的取值范围;
(2)若方程f(x)+|x2-1|=2在(0,2)上有两个不同的根x1、x2,求b的取值范围,并证明manfen5.com 满分网
(1)利用二次函数的对称轴和值域的关系寻找解决问题的突破口,关键要理解f[f(x)]与f(x)在x∈R时有相同的值域等价于 f(x)的最小值要小于二次函数顶点的横坐标; (2)将绝对值符号去掉进行讨论是解决本题的关键,利用方程根与系数的关系,进行放缩求解转化是证明本题的关键. (1)【解析】 当x∈R时,函数f(x)=x2+bx+2的图象是开口向上, 且对称轴为的抛物线,f(x)的值域为, 所以F(x)=f[f(x)]的值域也为的充要条件 是, 即b的取值范围为(-∞,-2]∪[4,+∞) (2)证明:f(x)+|x2-1|=2,即x2+bx+|x2-1|=0,由分析知b≠0 不妨设 因为H(x)在(0,1]上是单调函数,所以H(x)=0在(0,1]上至多有一个解. 若x1,x2∈(1,2),即x1、x2就是2x2+bx-1=0的解,,与题设矛盾. 因此,x1∈(0,1],x2∈(1,2).由,所以b≤-1; 由,所以 故当时,方程f(x)+|x2-1|=2在(0,2)上有两个解. 由消去b,得 由
复制答案
考点分析:
相关试题推荐
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数manfen5.com 满分网manfen5.com 满分网
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.
查看答案
设函数f(x)=manfen5.com 满分网,函数g(x)=ax2+5x-2a.
(1)求f(x)在[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立,求a的取值范围.
查看答案
设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
查看答案
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r)
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?(精确到元)

manfen5.com 满分网 查看答案
已知函数f(x)=ln(ex+1)-ax(a>0).(e是自然对数的底数)
(1)若函数y=f(x)的导函数是奇函数,求a的值;
(2)试讨论函数f(x)的单调性.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.