满分5 > 高中数学试题 >

数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4. (Ⅰ...

数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
(Ⅰ)由题设知b1,b3是方程x2-5x+4=0的两根,bn+1>bn,故b1=1,b3=4.b2=2.由此可知bn=b1qn-1=2n-1. (Ⅱ)由题设知an=log2bn+3=log22n-1+3=n-1+3=n+2,an+1-an=[(n+1)+2]-[n+2]=1,故数列{an}是首项为3,公差为1的等差数列. (Ⅲ)由题设知a1+a2+a3+…+am==≤a40=42,故m2+5m-84≤0,由此可知m的最大值是7. 【解析】 (Ⅰ)由,知b1,b3是方程x2-5x+4=0的两根, 注意到bn+1>bn,得b1=1,b3=4.(2分) ∴b22=b1b3=4,⇒b2=2. ∴b1=1,b2=2,b3=4 ∴等比数列.{bn}的公比为, ∴bn=b1qn-1=2n-1(4分) (Ⅱ)an=log2bn+3=log22n-1+3=n-1+3=n+2(5分) ∴an+1-an=[(n+1)+2]-[n+2]=1(7分) ∴数列{an}是首项为3,公差为1的等差数列.(8分) (Ⅲ)由(Ⅱ)知数列{an}是首项为3,公差为1的等差数列 ∴a1+a2+a3++am==(10分) 又a40=42 由a1+a2+a3++am≤a40,得 整理得m2+5m-84≤0,解得-12≤m≤7. ∴m的最大值是7.(12分)
复制答案
考点分析:
相关试题推荐
一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M、G分别是AB、DF的中点.
manfen5.com 满分网
(1)求证:CM⊥平面FDM;
(2)在线段AD上确定一点P,使得GP∥平面FMC,并给出证明;
(3)求直线DM与平面ABEF所成的角.
查看答案
已知manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
设函数f(x),g(x)的定义域分别为Df,Dg,且manfen5.com 满分网,若∀x∈Df,g(x)=f(x),则函数g(x)为f(x)在Dg上的一个延拓函数.已知f(x)=2x(x<0),g(x)是f(x)在R上的一个延拓函数,且g(x)是奇函数,则g(x)=    查看答案
在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为    查看答案
若不等式组manfen5.com 满分网表示的平面区域是一个三角形,则s的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.