满分5 > 高中数学试题 >

已知双曲线的一条渐近线方程为,则双曲线的离心率为( ) A. B. C. D.

已知双曲线manfen5.com 满分网的一条渐近线方程为manfen5.com 满分网,则双曲线的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题设条件可知双曲线焦点在x轴,可得a、b的关系,进而由离心率的公式,计算可得答案. 【解析】 双曲线焦点在x轴, 由渐近线方程可得, 故选A
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某雷达测速区规定:凡车速大于或等于70m/h视为“超速”,同时汽车将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有( )
A.30辆
B.40辆
C.60辆
D.80辆
查看答案
集合P={-1,0,1},Q={y|y=cosx,x∈R},则P∩Q=( )
A.P
B.Q
C.{-1,1}
D.[0,1]
查看答案
已知点B(0,1),点C(0,-3),直线PB、PC都是圆(x-1)2+y2=1的切线(P点不在y轴上).以原点为顶点,且焦点在x轴上的抛物线C恰好过点P.
(1)求抛物线C的方程;
(2)过点(1,0)作直线l与抛物线C相交于M,N两点,问是否存在定点R,使manfen5.com 满分网为常数?若存在,求出点R的坐标及常数;若不存在,请说明理由.
查看答案
已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且manfen5.com 满分网
(1)试求b,c所满足的关系式;
(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值范围;
(3)若b=1,集合A={x|f(x)>g(x),g(x)<0},试求集合A;
查看答案
数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.