满分5 > 高中数学试题 >

如图,已知圆心坐标为的⊙M与x轴及直线均相切,切点分别为A、B,另一个圆⊙N与⊙...

如图,已知圆心坐标为manfen5.com 满分网的⊙M与x轴及直线manfen5.com 满分网均相切,切点分别为A、B,另一个圆⊙N与⊙M、x轴及直线manfen5.com 满分网均相切,切点分别为C、D.
(1)求⊙M和⊙N的方程;
(2)过点B作直线MN的平行线l,求直线l被⊙N截得的弦的长度.

manfen5.com 满分网
(1)连接MA,根据⊙M与x轴相切得MA⊥OA,根据圆心坐标得到圆的半径为1,写出⊙M的方程;设出⊙N的半径r,利用相似求出r,并求出圆心N的坐标,即可得到⊙N的方程; (2)由对称性可知,所求的弦长等于过点A且与直线MN平行的直线被⊙N截得的弦长,根据点A的坐标和直线MN的斜率求出弦长的方程,然后利用点到直线的距离公式求出圆心N到弦的弦心距,然后利用勾股定理即可求出弦. 【解析】 (1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半径,则M在∠BOA的平分线上, 同理,N也在∠BOA的平分线上,即O,M,N三点共线,且OMN为∠BOA的平分线; ∵M的坐标为, ∴M到x轴的距离为1,即⊙M的半径为1, ∴⊙M的方程为, 设⊙N的半径为r,其与x轴的切点为C,连接MA、MC, 由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC, 即,解得r=3; ∴OC=,点N坐标为; ∴⊙N的方程为. (2)由对称性可知,所求的弦长等于过点A且与直线MN平行的直线被⊙N截得的弦长,此弦的方程是,即:, ∵圆心N到该弦的距离d=, ∴所求弦长=.
复制答案
考点分析:
相关试题推荐
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(1)求该企业使用该设备x年的年平均污水处理费用y(万元);
(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
查看答案
直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=manfen5.com 满分网
(1)求证:平面AB1C⊥平面B1CB;    (2)求三棱锥A1-AB1C的体积.

manfen5.com 满分网 查看答案
设P是椭圆manfen5.com 满分网上任意一点,A和F分别是椭圆的左顶点和右焦点,则manfen5.com 满分网的最小值为    查看答案
已知xOy平面内一区域A,命题甲:点(a,b)∈(x,y)||x|+|y|≤1;命题乙:点(a,b)∈A.
如果甲是乙的充分条件,那么区域A的面积的最小值是    查看答案
下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是manfen5.com 满分网=-0.7x+manfen5.com 满分网,则manfen5.com 满分网=   
月  份x1234
用水量y4.5432.5
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.