满分5 > 高中数学试题 >

如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F. (...

如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.

manfen5.com 满分网
(Ⅰ)过D点作DG∥BC,并交AF于G点,则易根据E是BD的中点,可得,△BEF≌△DEG,由全等三角形的性质可将BF:FC转化为DG:FC,再由平行线分线段成比例定理即可得到答案. (II)△BEF以BF为底,△BDC以BC为底,由(I)的结论,我们可以求出两个三角形的底边长之比,及高之比,进而求出△BEF的面积S1,四边形CDEF的面积S2的比值. 【解析】 (Ⅰ)过D点作DG∥BC,并交AF于G点,∵E是BD的中点,∴BE=DE, 又∵∠EBF=∠EDG,∠BEF=∠DEG,∴△BEF≌△DEG,则BF=DG,∴BF:FC=DG:FC, 又∵D是AC的中点,则DG:FC=1:2,则BF:FC=1:2;即(5分) (Ⅱ)若△BEF以BF为底,△BDC以BC为底,则由(1)知BF:BC=1:3, 又由BE:BD=1:2可知h1:h2=1:2,其中h1、h2分别为△BEF和△BDC的高, 则,则S1:S2=1:5.(10分)
复制答案
考点分析:
相关试题推荐
甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望E(ξ).
查看答案
已知直线y=2x+k被抛物线x2=4y截得的弦长AB为20,O为坐标原点.
(1)求实数k的值;
(2)问点C位于抛物线弧AOB上何处时,△ABC面积最大?

manfen5.com 满分网 查看答案
已知数列{an}的通项公式是an=2n-1,数列{bn}是等差数列,令集合A={a1,a2,…,an,…},B={b1,b2,…,bn,…},n∈N*.将集合A∪B中的元素按从小到大的顺序排列构成的数列记为{cn}.(1)若cn=n,n∈N*,求数列{bn}的通项公式;(2)若A∩B=∅,数列{cn}的前5项成等比数列,且c1=1,c9=8,求manfen5.com 满分网的正整数n的个数.
查看答案
已知函数manfen5.com 满分网(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点的切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;
(3)证明:不存在与曲线C同时切于两个不同点的直线.
查看答案
已知函数f(x)=sinx-cosx,x∈R.
(1)求函数f(x)在[0,2π]内的单调递增区间;
(2)若函数f(x)在x=x处取到最大值,求f(x)+f(2x)+f(3x)的值;
(3)若g(x)=ex(x∈r),求证:方程f(x)=g(x)在[0,+∞)内没有实数解.
(参考数据:ln2≈0.69,π≈3.14)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.