为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生身高频数分布表
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求该校男生的人数并完成下面频率分布直方图;
(2)估计该校学生身高在165:180cm的概率;
(3)从样本中身高在180:190cm之间的男生中任选2人,求至少有1人身高在185:190cm之间的概率.
考点分析:
相关试题推荐
在边长为6cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(1)判别MN与平面AEF的位置关系,并给出证明;
(2)求多面体E-AFMN的体积.
查看答案
已知函数f(x)=2sinωxcosωx-2cos
2ωx(x∈R,ω>0),相邻两条对称轴之间的距离等于
.
(Ⅰ)求
的值;
(Ⅱ)当
时,求函数f(x)的最大值和最小值及相应的x值.
查看答案
若直角坐标平面内两点P、Q满足条件:①P、Q都在函数f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与(Q,P)看作同一个“友好点对”).已知函数
则f(x)的“友好点对”有
个.
查看答案
某人午觉醒来,发现表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为
.
查看答案
设函数f(x)的定义域为D,若存在非零数l使得对于任意x∈M(M⊆D)有x+l∈D且f(x+l)≥f(x),则称f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=
为R上的1高调函数;
②函数f(x)=sin2x为R上的π高调函数
③如果定义域为[1,+∞)的函数f(x)=x
2为[-1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞)其中正确的命题是
.(写出所有正确命题的序号)
查看答案