满分5 > 高中数学试题 >

已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为...

已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为止.
(1)求恰好在第5次测试时3件次品全部被测出的概率;
(2)记恰好在第k次测试时3件次品全部被测出的概率为f(k),求f(k)的最大值和最小值.
(1)根据题意,若恰好在第5次测试时3件次品全部被测出,则第5次取出第3件次品,前4次中有2次是次品,2次是正品;有排列、组合数公式可得其情况数目,易得从10件产品中顺序取出5件的情况数目,由等可能事件的概率,计算可得答案; (2)根据题意,分析可得k的范围是3≤k≤9,进而分3≤k≤6、7≤k≤9时讨论,由等可能事件计算可得f(k),比较大小可得答案. 【解析】 (1)若恰好在第5次测试时3件次品全部被测出,则第5次取出第3件次品,前4次中有2次是次品,2次是正品; 则有A31C72A44种情况,从10件产品中顺序取出5件,有A105种情况, 则第5次测试时3件次品全部被测出的概率, (2)根据题意,分析可得k的范围是3≤k≤9, 当3≤k≤6时,若恰好在第k次测试时3件次品全部被测出,则第k次取出第3件次品,前k-1次中有2次是次品,k-3次是正品;而从10件产品中顺序取出k件,有A10k种情况,则, 则f(3)=,f(4)=,f(5)=,f(6)=; 当k=7时,即恰好在第7次测试时3件次品全部被测出,有两种情况,一是第7次取出第3件次品,前6次中有2次是次品,4次是正品;二是前7次没有取出次品,此时也可以测出三件次品, 则; 当k=8时,即恰好在第7次测试时3件次品全部被测出,有两种情况,一是第8次取出第3件次品,前7次中有2次是次品,5次是正品;二是前7次没有取出次品,第8次取出第1件次品, 则; 当k=9时,即恰好在第9次测试时3件次品全部被测出,有两种情况,一是第9次取出第3件次品,前8次中有2次是次品,6次是正品;二是前8次取出1次次品,第9次取出第2件次品, . 故,.
复制答案
考点分析:
相关试题推荐
(理)设函数f(x)=(x+1)ln(x+1).
(1)求f(x)的单调区间;
(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.
查看答案
(文科做) 如图,在边长为a的正方体ABCD-A1B1C1D1中M、N、P、Q分别为AD,CD,BB1,C1D1的中点
(1)求点P到平面MNQ的距离;
(2)求直线PN与平面MPQ所成角的正弦值.

manfen5.com 满分网 查看答案
在△ABC中,manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)若manfen5.com 满分网,且△ABP的面积为manfen5.com 满分网,求实数λ的值.
查看答案
给出下列四个命题:
①“向量a,b的夹角为锐角”的充要条件是“a•b>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有manfen5.com 满分网
③将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有72种不同的放法;
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是    .(请写出所有真命题的序号) 查看答案
计算manfen5.com 满分网,可以采用以下方法:构造恒等式manfen5.com 满分网,两边对x求导,得manfen5.com 满分网,在上式中令x=1,得manfen5.com 满分网.类比上述计算方法,计算manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.