满分5 > 高中数学试题 >

过双曲线(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),...

过双曲线manfen5.com 满分网(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.2
D.manfen5.com 满分网
根据OM⊥PF,且FM=PM判断出△POF为等腰直角三角形,推断出∠OFP=45°,进而在Rt△OFM中求得半径a和OF的关系,进而求得a和c的关系,则双曲线的离心率可得. 【解析】 ∵OM⊥PF,且FM=PM ∴OP=OF, ∴∠OFP=45° ∴|0M|=|OF|•sin45°,即a=c• ∴e== 故选A
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网图是一个算法的程序框图,该算法输出的结果是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是( )
manfen5.com 满分网
A.①④
B.②③
C.②④
D.①②
查看答案
下列说法正确的是( )
A.“x2=1”是“x=1”的充分不必要条件
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”
D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题
查看答案
如果若干个函数的图象经过平移后能够重合,则这些函数为“互为生成”函数,给出下列函数,其中与f(x)=sinx+cosx构成“互为生成”函数的为( )
A.f2(x)=sin
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.