如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,
且AE=AF.
(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.
考点分析:
相关试题推荐
设函数f(x)=x
2,g(x)=alnx+bx(a>0).
(Ⅰ)若f(1)=g(1),f'(1)=g'(1),求F(x)=f(x)-g(x)的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,说明理由.
(Ⅲ)设G(x)=f(x)+2-g(x)有两个零点x
1,x
2,且x
1,x
,x
2成等差数列,试探究G'(x
)值的符号.
查看答案
已知椭圆C:
(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点
构成等边三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A
1.
(ⅰ)求证:直线A
1B过x轴上一定点,并求出此定点坐标;
(ⅱ)求△OA
1B面积的取值范围.
查看答案
如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=a,PD=
a.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小.
查看答案
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x
2+ξ•x为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.
查看答案
在△ABC中,已知∠A、∠B、∠C的对边分别为a、b、c,且∠C=2∠A.
(1)若△ABC为锐角三角形,求
的取值范围;
(2)若
,a+c=20,求b的值.
查看答案