满分5 > 高中数学试题 >

如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点...

如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=manfen5.com 满分网,试求ξ的分布列及数学期望.

manfen5.com 满分网
(I)根据小弹子以相同的概率落入每个通道,早每一个分叉处小球落入那一个通道的概率是相同的,根据独立重复试验的概率公式得到结果,推出具有一般性的结论. (II)根据题意知变量ξ的可能取值是3,2,1,结合变量对应的事件和前一问做出的概率公式,写出变量对应的概率和分布列,求出期望值. 【解析】 (I)由题意知, P(2,1)= P(3,2)= ∴P(m,n)= (II)由题意知变量ξ的可能取值是3,2,1 P(ξ=3)==, P(ξ=2)=, P(ξ=1)= ∴ξ的分布列是         ξ        3 2           1 P ∴Eξ=3×
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
查看答案
已知圆M:(x+manfen5.com 满分网2+y2=manfen5.com 满分网的圆心为M,圆N:(x-manfen5.com 满分网2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.
查看答案
设△ABC中的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网,b=2.
(Ⅰ)当manfen5.com 满分网时,求角A的度数;
(Ⅱ)求△ABC面积的最大值.
查看答案
在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是    (把所有正确答案的序号都填上)
(1)manfen5.com 满分网+2x22+x32(2)manfen5.com 满分网 (3)manfen5.com 满分网  (4)manfen5.com 满分网查看答案
设F为抛物线y2=2px(p>0)的焦点,点A在抛物线上,O为坐标原点,若∠OFA=120°,且manfen5.com 满分网,则抛物线的焦点到准线的距离等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.