满分5 > 高中数学试题 >

已知函数f(x)=plnx+(p-1)x2+1. (1)讨论函数f(x)的单调性...

已知函数f(x)=plnx+(p-1)x2+1.
(1)讨论函数f(x)的单调性;
(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;
(3)证明:1n(n+1)<1+manfen5.com 满分网…+manfen5.com 满分网(n∈N+).
(1)利用导数来讨论函数的单调性即可,具体的步骤是:(1)确定 f(x)的定义域;(2)求导数fˊ(x);(3)在函数 的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定 的单调区间.若在函数式中含字母系数,往往要分类讨论.(2)当P=1时,f(x)≤kx恒成立,分离参数等价于k≥,利用导数求函数h(x)=的最大值即可求得实数k的取值范围;(3)由(2)知,当k=1时,有f(x)≤x,当x>1时,f(x)<x,即lnx<x-1,令x=,则得到,利用导数的运算法则进行化简,然后再相加,即可证得结论. 【解析】 (1)f(x)的定义域为(0,+∞),f′(x)=, 当p>1时,f′(x)>0,故f(x)在(0,+∞)上单调递增; 当p≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减; 当0<p<1时,令f′(x)=0,解得x=. 则当x时,f′(x)>0;x时,f′(x)<0, 故f(x)在(0,)上单调递增,在上单调递减; (2)∵x>0, ∴当p=1时,f(x)≤kx恒成立⇔1+lnx≤kx⇔k≥, 令h(x)=,则k≥h(x)max, ∵h′(x)==0,得x=1, 且当x∈(0,1),h′(x)>0;当x∈(1,+∞),h′(x)<0; 所以h(x)在0,1)上递增,在(1,+∞)上递减, 所以h(x)max=h(1)=1, 故k≥1. (3)由(2)知,当k=1时,有f(x)≤x,当x>1时,f(x)<x,即lnx<x-1, ∴令x=,则,即, ∴ln2-ln1<1,, 相加得1n(n+1)<1+…+.
复制答案
考点分析:
相关试题推荐
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=manfen5.com 满分网,试求ξ的分布列及数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
查看答案
已知圆M:(x+manfen5.com 满分网2+y2=manfen5.com 满分网的圆心为M,圆N:(x-manfen5.com 满分网2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.
查看答案
设△ABC中的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网,b=2.
(Ⅰ)当manfen5.com 满分网时,求角A的度数;
(Ⅱ)求△ABC面积的最大值.
查看答案
在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是    (把所有正确答案的序号都填上)
(1)manfen5.com 满分网+2x22+x32(2)manfen5.com 满分网 (3)manfen5.com 满分网  (4)manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.