满分5 > 高中数学试题 >

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0. (1)若...

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(2)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(1)设函数g(x)图象与x轴的交点坐标为(a,0),而点(a,0)也在函数f(x)的图象上,代入函数f(x)的解析式建立等式,解之即可求出a的值; (2)依题意,f(x)=g(x),函数f(x)与g(x)图象相交于不同的两点A、B,则△>0,求出a的范围,设A(x1,y1),B(x2,y2),求出AB以及点O到直线g(x)=x-a的距离,从而求出三角形的面积关于a的函数,根据a的范围求出面积的最值. 【解析】 (1)设函数g(x)图象与x轴的交点坐标为(a,0), 又∵点(a,0)也在函数f(x)的图象上,∴a3+a2=0. 而a≠0,∴a=-1. (2)依题意,f(x)=g(x),即ax2+ax=x-a, 整理,得  ax2+(a-1)x+a=0,① ∵a≠0,函数f(x)与g(x)图象相交于不同的两点A、B, ∴△>0,即△=(a-1)2-4a2=-3a2-2a+1=(3a-1)(-a-1)>0. ∴-1<a<且a≠0.…(6分) 设A(x1,y1),B(x2,y2),且x1<x2,由①得,x1•x2=1>0,. 设点O到直线g(x)=x-a的距离为d, 则,. ∴S△OAB= =. ∵-1<a<且a≠0,∴当时,S△OAB有最大值,S△OAB无最小值.
复制答案
考点分析:
相关试题推荐
已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
查看答案
某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k(k>0),贷款的利率为6%,又银行吸收的存款能全部放贷出去.
(1)若存款的利率为x,x∈(0,0.06),试分别写出存款数量g(x)及银行应支付给储户的利息h(x)与存款利率x之间的关系式;
(2)存款利率定为多少时,银行可获得最大收益?
查看答案
已知函数f(x)=log4(4x+1)+kx (x∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)-m=0有解,求m的取值范围.
查看答案
已知a>0,设命题p:函数y=ax在R上单调递减,q:设函数manfen5.com 满分网对任意的x,恒有y>1.若p∧q为假,p∨q为真,求a的取值范围.
查看答案
记函数f(x)=log2(2x-3)的定义域为集合M,函数g(x)=manfen5.com 满分网的定义域为集合N.求:
(1)集合M、N;
(2)集合M∩N、M∪N.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.