满分5 > 高中数学试题 >

已知f(x)=kxlnx,g(x)=-x2+ax-(k+1)(k>0). (Ⅰ)...

已知f(x)=kxlnx,g(x)=-x2+ax-(k+1)(k>0).
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
(Ⅰ)利用导数求单调性,比较给的区间与单调区间的关系求出最值, (Ⅱ)分离参数,不等式恒成立转化成函数最值, (Ⅲ)通过构造函数,利用第一问的结论求出最值证出不等式 【解析】 (Ⅰ)f′(x)=k(lnx+1), 当,f′(x)<0,f(x)单调递减, 当,f′(x)>0,f(x)单调递增. ①,t无解; ②,即时,; ③,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=ktlnt; 所以. (Ⅱ)kxlnx≥-x2+ax-(k+1),则, 设,则,x∈(0,1),h′(x)<0,h(x)单调递减,x∈(1,+∞),h′(x)>0,h(x)单调递增, 所以h(x)min=h(1)=k+2,因为对一切x∈(0,+∞),f(x)≥g(x)恒成立,所以a≤h(x)min=k+2; (Ⅲ)问题等价于证明,由(1)可知,f(x)=kxlnx(x∈(0,+∞))(k>0)的最小值是,当且仅当时取到,故. 设,则,易得, 当且仅当x=1时取到,从而对一切x∈(0,+∞),都有成立.①
复制答案
考点分析:
相关试题推荐
如图,△ABC中,∠C=90o,∠A=45o,DC⊥平面ABC,DC=6,G为△ABC的重心M为GD上的一点,∠MCG=45o
(1)求证AB⊥DG;
(2)求二面角G-MC-B的大小.

manfen5.com 满分网 查看答案
已知角α、β满足:5manfen5.com 满分网sinα+5cosα=8,manfen5.com 满分网且α∈(0,manfen5.com 满分网),β∈(manfen5.com 满分网manfen5.com 满分网),求cos(α+β)的值.
查看答案
某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的.
(1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;
(2)若下午某一时段每位教师需要使用电脑的概率都是manfen5.com 满分网,求在这一时段该办公室电脑使用的平均台数和无法满足需求的概率.
查看答案
设函数f(x),g(x)的定义域分别为DJ,DE.且DJ⊊DE,若对于任意x∈DJ,都有g(x)=f(x),则称函数g(x)为f(x)在DE上的一个延拓函数.设f(x)=xlnx(x>0),g(x)为f(x)在(-∞,0)∪(0,+∞)上的一个延拓函数,且g(x)是奇函数,则g(x)=    ;设f(x)=2x-1(x≤0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=    查看答案
如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB•AE=AC•DB.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.