根据让函数解析式有意义的原则确定函数的定义域,然后根据解析式易用分析法求出函数的值域;根据f(k-x)与f(-x)的关系,可以判断函数y=f(x)的图象是否关于直线(k∈Z)对称;再判断f(x+1)=f(x)是否成立,可以判断③的正误;而由①的结论,易判断函数y=f(x)在上的单调性,但要说明④不成立,我们可以举出一个反例.
①中,令x=m+a,a∈(-,]
∴f(x)=|x-{x}|=|a|∈[0,]
所以①正确;
②中∵f(k-x)=|(k-x)-{k-x}|=|(-x)-{-x}|=f(-x)
所以关于对称,故②正确;
③中,∵f(x+1)=|(x+1)-{x+1}|=|x-{x}|=f(x)
所以周期为1,故③正确;
④中,x=-时,m=-1,
f(-)=
x=时,m=0,
f()=
所以f(-)=f()
所以④错误.
故选C