满分5 > 高中数学试题 >

设函数f(x)=lnx-ax2-bx. (Ⅰ)当a=b=时,求f(x)的最大值;...

设函数f(x)=lnx-manfen5.com 满分网ax2-bx.
(Ⅰ)当a=b=manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+manfen5.com 满分网ax2+bx+manfen5.com 满分网(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I )先求定义域,再研究单调性,从而求最值. (II)先构造函数F(x)再由以其图象上任意一点P(x,y)为切点的切线的斜率k≤恒成立,知导函数≤恒成立,再转化为所以求解. (III)先把程2mf(x)=x2有唯一实数解,转化为所以x2-2mlnx-2mx=0有唯一实数解,再利用单调函数求解. 【解析】 (Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分) 当时,, .(2分) 令f′(x)=0,解得x=1. 当0<x<1时,f′(x)>,此时f(x)单调递增; 当x>1时,f′(x)<0,此时f(x)单调递减.(3分) 所以f(x)的极大值为,此即为最大值.(4分) (Ⅱ), 所以,在x∈(0,3]上恒成立,(6分) 所以,x∈(0,3](7分) 当x=1时,取得最大值.所以a≥.(9分) (Ⅲ)因为方程2mf(x)=x2有唯一实数解, 所以x2-2mlnx-2mx=0有唯一实数解. 设g(x)=x2-2mlnx-2mx,则. 令g′(x)=0,得x2-mx-m=0. 因为m>0,x>0, 所以(舍去),,(10分) 当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减, 当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增. 当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分) 因为g(x)=0有唯一解,所以g(x2)=0. 则,即 所以2mlnx2+mx2-m=0, 因为m>0,所以2lnx2+x2-1=0.(12分) 设函数h(x)=2lnx+x-1, 因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分) 因为h(I)=0,所以方程的解为(X2)=1,即, 解得(14分)
复制答案
考点分析:
相关试题推荐
在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d(米)与车速v(千米/小时)需遵循的关系是manfen5.com 满分网(其中a(米)是车身长,a为常量),同时规定manfen5.com 满分网
(1)当manfen5.com 满分网时,求机动车车速的变化范围;
(2)设机动车每小时流量manfen5.com 满分网,应规定怎样的车速,使机动车每小时流量Q最大.
查看答案
manfen5.com 满分网如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=manfen5.com 满分网
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
查看答案
△ABC中,a,b,c分别是角A、B、C的对边,向量manfen5.com 满分网
(1)求角B的大小;
(2)若a=manfen5.com 满分网,b=1,求c的值.
查看答案
在各项均为负数的数列{an}中,已知点(an,an+1)(n∈N*)在函数manfen5.com 满分网的图象上,且manfen5.com 满分网
(1)求证:数列{an}是等比数列,并求出其通项;
(2)若数列{bn}的前n项和为Sn,且bn=an+n,求Sn
查看答案
如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.