满分5 > 高中数学试题 >

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为,直线...

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为manfen5.com 满分网,直线l与y轴交于点P(0,m),与椭圆C交于相异两点Amanfen5.com 满分网
(1)求椭圆方程;
(2)若manfen5.com 满分网的取值范围。.
(1)利用待定系数法求椭圆的方程,设出椭圆C的标准方程,依条件得出a,b的方程,求出a,b即得椭圆C的方程. (2)先设l与椭圆C交点为A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量条件即可求得m的取值范围,从而解决问题. 【解析】 (1)设椭圆C的方程:,则c2=a2-b2,, 故椭圆C的方程为y2+2x2=1.(4分) (2)由, ∴. ∵, ∴λ+1=4,λ=3. 设l与椭圆C交点为A(x1,y1),B(x2,y2), 得(k2+2)x2+2kmx+(m2-1)=0, 因此△=(2km)2-4(k2+2)(m2-1) =4(k2-2m2+2)>0,① 则x1+x2=. ∵,∴-x1=3x2,得 得3(x1+x2)2+4x1x2=0, ∴, 整理得:4k2m2+2m2-k2-2=0. 当时,上式不成立. ∴. 由①式得k2>2m2-2, ∵λ=3,∴k≠0,, 所以或. 即所求m的取值范围为(14分)
复制答案
考点分析:
相关试题推荐
双曲线manfen5.com 满分网的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e的取值范围是    查看答案
已知数列{an}(n∈N*)满足manfen5.com 满分网,且t<a1<t+1,其中t>2,若an+k=an(k∈N*),则实数k的最小值为    查看答案
平面上的向量manfen5.com 满分网,若向量manfen5.com 满分网
最大为    查看答案
若直线y=kx+2与抛物线y2=4x仅有一个公共点,则实数k=    查看答案
函数y=f(x)(x∈R)满足:对一切manfen5.com 满分网,当manfen5.com 满分网=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.