满分5 > 高中数学试题 >

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=...

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终相切;
②对于任意的θ,圆C1与圆C2始终有四条公切线;
③当manfen5.com 满分网时,圆C1被直线manfen5.com 满分网截得的弦长为manfen5.com 满分网
④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
其中正确命题的序号为    
①由两圆的方程找出圆心坐标与半径,然后利用两点间的距离公式求出两圆心之间的距离,与两半径之和比较大小即可判断两圆的位置关系; ②根据①得到两圆的位置关系即可得到两圆的公切线的条数; ③把θ的值代入圆方程中得到圆C1的方程,利用点到直线的距离公式求出圆心到直线l的距离,由半径和求出的弦心距,利用垂径定理及勾股定理即可求出弦长; ④根据两圆相切得到,两圆心确定的直线与两圆的两个交点为P和Q时,|PQ|最大,最大值等于两直径相加. 【解析】 ①由圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1, 得到圆C1的圆心(2cosθ,2sinθ),半径R=1;圆C2的圆心(0,0),半径r=1, 则两圆心之间的距离d==2,而R+r=1+1=2,所以两圆的位置关系是外切,此答案正确; ②由①得两圆外切,所以公切线的条数是3条,所以此答案错误; ③把θ=代入圆C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-)2+(y-1)2=1, 圆心(,1)到直线l的距离d==, 则圆被直线l截得的弦长=2=,所以此答案正确; ④由两圆外切得到|PQ|=2+2=4,此答案正确. 综上,正确答案的序号为:①③④. 故答案为:①③④
复制答案
考点分析:
相关试题推荐
已知数列{an}满足an2=an-1an+1(n∈N*,n≥2),若manfen5.com 满分网,a4a6=4,则a4+a5+a6=    查看答案
如图一个几何体的正视图和俯视图如图所示,其中俯视图为边长为manfen5.com 满分网的正三角形,且圆与三角形内切,则侧视图的面积为    
manfen5.com 满分网 查看答案
抛物线y2=2px(p>0)的焦点为F,准线l与x轴交于点M,若N为l上一点,当△MNF为等腰三角形,manfen5.com 满分网时,则p=    查看答案
设函数manfen5.com 满分网,其中[x]表示不超过x的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1,若f(x)=kx+k(k>0)有三个不同的根,则实数k的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
利用计算机在区间(0,1)上产生两个随机数a和b,则方程manfen5.com 满分网有实根的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.