已知曲线C
1的参数方程为
(θ为参数),曲线C
2的参数方程为
(t为参数).
(1)若将曲线C
1与C
2上各点的横坐标都缩短为原来的一半,分别得到曲线C
1′和C
2′,求出曲线C
1′和C
2′的普通方程;
(2)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C
2′垂直的直线的极坐标方程.
考点分析:
相关试题推荐
如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC交AE于点F,交AB于D点.
(I)求∠ADF的度数;
(II)若AB=AC,求AC:BC.
查看答案
已知f(x)=lnx,
(a∈R).
(1)求f(x)-g(x)的单调区间;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n∈N
*,n≥2时,证明:
.
查看答案
已知椭圆
(a>b>0)的离心率为
,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线l与椭圆交于A,B两点,O为坐标原点,且
,
,求直线l的方程.
查看答案
在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=AD=a,BC=2a,PD⊥底面ABCD.
(1)在PD上是否存在一点F,使得PB∥平面ACF,若存在,求出
的值;若不存在,试说明理由;
(2)在(1)的条件下,若PA与CD所成的角为60°,求二面角A-CF-D的余弦值.
查看答案
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;
②若这8位同学的数学、物理分数事实上对应下表:
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:
=bx+a,其中
,
;参考数据:
,
,
,
,
,
,
)
查看答案