满分5 > 高中数学试题 >

已知以下四个命题: ①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根...

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若manfen5.com 满分网,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是    (填上你认为正确的序号).
根据二次不等式的解法,可以判断①的真假;由分式不等式的解法,可以判断②的对错;根据四种命题真假性的关系,可以判断③的正误;根据函数周期的计算方法,可以判断④的真假,进而得到答案. 【解析】 如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么当a>0时,不等式ax2+bx+c<0的解集为{x|x1<x<x2},故①错误; 若,则(x-1)(x-2)≤0且x-2≠0,故②错误; ∵若m>2,则x2-2x+m>0的解集是实数集R为真命题,∴“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题也为真命题; ∵定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则f(2+x)=f[(1+x)+1]=f[1-(1+x)=f(-x)=-f(x), ∴f(4+x)=-f(2+x)=f(x),即4是y=f(x)的一个周期.故④也为真命题 故答案为③④
复制答案
考点分析:
相关试题推荐
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=manfen5.com 满分网,A+C=2B,则sinC=    查看答案
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则a,b,c的大小关系是    查看答案
函数manfen5.com 满分网的定义域是    查看答案
manfen5.com 满分网如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( )
A.(manfen5.com 满分网
B.(1,2)
C.(manfen5.com 满分网,1)
D.(2,3)
查看答案
已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2009=( )
A.2009
B.-2009
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.