满分5 > 高中数学试题 >

已知函数f(x)=x(x-a)(x-b),其中0<a<b. (1)设f(x)在x...

已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设f(x)在x=s和x=t处取得极值,其中s<t,求证:0<s<a<t<b;
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上;
(3)若manfen5.com 满分网,求证:过原点且与曲线y=f(x)相切的两条直线不可能垂直.
(1)根据函数的极值点出导数为0,知,极值点是导数等于零的根,所以先求导,再解导数等于零,两根为s,t,再判断x=a,b时导数的正负,比较大小即可. (2)求出AB的中点坐标,再代入y=f(x),判断是否成立即可. (3)如果两条切线互相垂直,则斜率乘积等于-1,所以要证两条切线不可能垂直,只需证明它们斜率之积不等于-1即可,利用曲线的切线斜率是该点处的导数来计算. 【解析】 (1)f(x)=x3-(a+b)x2+abx,∴f'(x)=3x2-2(a+b)x+ab=0的两根为s,t, 令f'(x)=g(x),∵0<a<b,∴g(0)=ab>0,g(a)=a(a-b)<0,g(b)=b(b-a)>0, 故有0<s<a<t<b. (2)设AB中点C(x,y),则, 故有,∴,. ∴. 代入验算可知C在曲线y=f(x)上. (3)过曲线上的点(x1,y1)的切线的斜率是31x2-2(a+b)x1+ab, 当x1=0时,切线的斜率k1=ab; 当x1≠0时,,∴, ∴切线斜率. ∵,∴,∴k2>(ab-2) ∴k1k2=abk2>ab(ab-2)=(ab-1)2-1≥-1 ∴k1k2≠-1,故过原点且与曲线相切的两条直线不可能垂直.
复制答案
考点分析:
相关试题推荐
在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5,…,则称{an}为“绝对差数列”.
(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);
(2)证明:任何“绝对差数列”中总含有无穷多个为零的项.
查看答案
已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.
(I)求抛物线S的方程;
(II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点.
查看答案
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N.
(I)求证:SB∥平面ACM;
(Ⅱ)求二面角D-AC-M的大小;
(Ⅲ)求证:平面SAC⊥平面AMN.

manfen5.com 满分网 查看答案
某城市有30%的家庭订阅了A报,有60%的家庭订阅了B报,有20%的家庭同时订阅了A报和B报,从该城市中任取4个家庭.
(Ⅰ)求这4个家庭中恰好有3个家庭订阅了A报的概率;
(Ⅱ)求这4个家庭中至多有3个家庭订阅了B报的概率;
(Ⅲ)求这4个家庭中恰好有2个家庭A,B报都没有订阅的概率.
查看答案
观察式子:1+manfen5.com 满分网,1+manfen5.com 满分网,1+manfen5.com 满分网,…,则可归纳出式子为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.