满分5 > 高中数学试题 >

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关...

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求manfen5.com 满分网的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
(Ⅰ)设圆心的坐标,利用对称的特征:①点与对称点连线的中点在对称轴上;②点与对称点连线的斜率与对称轴的斜率之积等于 -1,求出圆心坐标,又⊙C过点P(1,1),可得半径,从而写出⊙C方程. (Ⅱ)设Q的坐标,用坐标表示两个向量的数量积,化简后再进行三角代换,可得其最小值. (Ⅲ)设出直线PA和直线PB的方程,将它们分别与⊙C的方程联立方程组,并化为关于x的一元二次方程,由x=1一定是该方程的解,可求得A,B的横坐标(用k表示的),化简直线AB的斜率,将此斜率与直线OP的斜率作对比,得出结论. 【解析】 (Ⅰ)设圆心C(a,b),则,解得(3分) 则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2, 故圆C的方程为x2+y2=2(5分) (Ⅱ)设Q(x,y),则x2+y2=2,(7分) =x2+y2+x+y-4=x+y-2,令x=cosθ,y=sinθ, ∴=cosθ+sinθ-2=2sin(θ+)-2,∴(θ+)=2kπ-时,2sin(θ+)=-2, 所以的最小值为-2-2=-4. (10分) (Ⅲ)由题意知,直线PA和直线PB的斜率存在,且互为相反数, 故可设PA:y-1=k(x-1),PB:y-1=-k(x-1),由, 得(1+k2)x2+2k(1-k)x+(1-k)2-2=0(11分) 因为点P的横坐标x=1一定是该方程的解,故可得(13分) 同理,,所以=kOP , 所以,直线AB和OP一定平行(15分)
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(1+tanx,1-tanx),manfen5.com 满分网=(sin(x-manfen5.com 满分网),sin(x+manfen5.com 满分网)).
(1)求证:∠BAC为直角;
(2)若x∈[-manfen5.com 满分网manfen5.com 满分网],求△ABC的边BC的长度的取值范围.
查看答案
为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:manfen5.com 满分网
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=   
b=    ,c=   
(2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?
manfen5.com 满分网 查看答案
如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图象是    
manfen5.com 满分网 查看答案
实数x,y满足tanx=x,tany=y,且|x|≠|y|,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.