满分5 > 高中数学试题 >

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=,...

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=manfen5.com 满分网,令bn=anSn,数列manfen5.com 满分网的前n项和为Tn
(Ⅰ)求{an}的通项公式和Sn
(Ⅱ)求证:manfen5.com 满分网
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
(Ⅰ)设出等差数列的公差为d,代入到a3=7和a1+a2+a3=12求出a1和d即可求出数列的通项公式,把通项公式代入到Sn=中并根据f(x)=x3得到sn的通项公式; (Ⅱ)由(Ⅰ)知bn=anSn=(3n-2)(3n+1),所以==(-),得到bn的前n项和Tn=(1-)<得证; (Ⅲ)由(Ⅱ)分别求出T1,Tm和Tn,因为T1,Tm,Tn成等比数列,所以,分别讨论m和n都为正整数且1<m<n即可得到存在并求出此时的m和n的值即可. 【解析】 (Ⅰ)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12. 解得a1=1,d=3∴an=3n-2 ∵f(x)=x3∴Sn==an+1=3n+1. (Ⅱ)bn=anSn=(3n-2)(3n+1) ∴∴ (Ⅲ)由(2)知,∴,∵T1,Tm,Tn成等比数列. ∴即 当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意; 当m=3时,=,n无正整数解;当m=4时,=,n无正整数解; 当m=5时,=,n无正整数解;当m=6时,=,n无正整数解; 当m≥7时,m2-6m-1=(m-3)2-10>0,则,而, 所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列. 综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
复制答案
考点分析:
相关试题推荐
某城市为了解决人民路拥挤现象,政府决定建设高架公路,该高架公路两端的桥墩及引桥已建好,这两桥墩相距1280米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为manfen5.com 满分网万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)政府至少还需投入多少万元资金才能启动此工程建设,此时新建桥墩有多少个?
查看答案
已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求manfen5.com 满分网的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(1+tanx,1-tanx),manfen5.com 满分网=(sin(x-manfen5.com 满分网),sin(x+manfen5.com 满分网)).
(1)求证:∠BAC为直角;
(2)若x∈[-manfen5.com 满分网manfen5.com 满分网],求△ABC的边BC的长度的取值范围.
查看答案
为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:manfen5.com 满分网
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=   
b=    ,c=   
(2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.