满分5 > 高中数学试题 >

若函数y=f(x)的图象关于点(h,k)对称,则函数g(x)=f(x+h)-k是...

若函数y=f(x)的图象关于点(h,k)对称,则函数g(x)=f(x+h)-k是( )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
不妨设h>0,k>0根据平移变换g(x)的图象是由f(x)的图象向左平移h个单位,向下平移k个单位,可知关于原点对称. 【解析】 不妨设h>0,k>0根据平移变换:函数g(x)=f(x+h)-k由f(x)的图象向左平移h个单位,向下平移k个单位得到的,这样g(x)的图象关于原点对称,所以g(x)是奇函数. 故选A
复制答案
考点分析:
相关试题推荐
已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点( )
A.(2,-2)
B.(2,2)
C.(-4,2)
D.(4,-2)
查看答案
命题p:若xy≠6,则x≠2或y≠3,命题q:当a∈(-1,5]时,|2-x|+|3+x|≥a2-4a对任意x∈R恒成立,则( )
A.“p或¬q”为假命题;
B.“¬p且q”为真命题;
C.“¬p或q“为假命题;
D.“p且q”为真命题
查看答案
manfen5.com 满分网,g(x)是f(x)的反函数.
(Ⅰ)若关于x的方程:manfen5.com 满分网在x∈[0,1)上有实数解,求实数t的取值范围;
(Ⅱ)当a=e(e是自然对数的底数)时,记manfen5.com 满分网,求函数h(x)的最大值;
(Ⅲ)当a>1时,求证:manfen5.com 满分网(n∈N*).
查看答案
已知中心在原点,焦点在x轴上的椭圆短轴的两个端点与两个焦点围成正方形,右准线与x轴的交点为E,右焦点为F2,且|F2E|=1.
(1)求椭圆的方程;
(2)若过F2的直线交椭圆于A.B两点,且manfen5.com 满分网+manfen5.com 满分网与向量(1,-manfen5.com 满分网)共线(O为坐标原点),求manfen5.com 满分网manfen5.com 满分网的夹角.
查看答案
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn
(1)求证:数列manfen5.com 满分网为等差数列,并求通项bn
(2)求证:Tn+1>Tn
(3)求证:当n≥2时,manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.