满分5 > 高中数学试题 >

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)...

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数manfen5.com 满分网manfen5.com 满分网
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.
(1)当a=1时,易知f(x)在(-∞,0)上递减,有f(x)>f(0)=3,再有给出的定义判断; (2)由函数f(x)在[0,+∞)上是以3为上界的有界函数,结合定义则有|f(x)|≤3在[0,+∞)上恒成立,再转化为在[0,+∞)上恒成立即可; (3)据题意先研究函数g(x)在[0,1]上的单调性,确定函数g(x)的范围,即分别求的最大值和最小值,根据上界的定义,T(m)不小于最大值,从而解决. 【解析】 (1)当a=1时, 因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3, 即f(x)在(-∞,1)的值域为(3,+∞)故不存在常数M>0,使|f(x)|≤M成立 所以函数f(x)在(-∞,1)上不是有界函数.(4分) (2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.(5分) -3≤f(x)≤3, ∴在[0,+∞)上恒成立(6) ∴(7分) 设2x=t,,,由x∈[0,+∞)得t≥1, 设1≤t1<t2, 所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,(9分) h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1 所以实数a的取值范围为[-5,1].(10分) (3), ∵m>0,x∈[0,1] ∴g(x)在[0,1]上递减,(12分) ∴g(1)≤g(x)≤g(0)即(13分) ①当,即时,,(12分) 此时,(14分) ②当,即时,, 此时, 综上所述,当时,T(m)的取值范围是; 当时,T(m)的取值范围是[,+∞)(16分)
复制答案
考点分析:
相关试题推荐
已知过点A(0,1),且方向向量为manfen5.com 满分网的直线l与⊙C:(x-2)2+(y-3)2=1,相交于M、N两点.
(1)求实数k的取值范围;
(2)求证:manfen5.com 满分网=定值;
(3)若O为坐标原点,且manfen5.com 满分网=12,求k的值.
查看答案
设集合manfen5.com 满分网,B={x|(x-m+1)(x-2m-1)<0}.
(1)求A∩Z;
(2)若A⊇B,求m的取值范围.
查看答案
manfen5.com 满分网在△ABC中,已知BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0.若点B的坐标为(1,2),求点C的坐标.
查看答案
设函数manfen5.com 满分网有两个极值点,其中一个在区间(0,1)内,另一个在区间(1,2)内,则manfen5.com 满分网的取值范围是    查看答案
manfen5.com 满分网为参数)的标准方程是     ,过这个圆外一点P(2,3)的该圆的切线方程是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.