满分5 > 高中数学试题 >

已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称...

已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是( )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)
由函数y=f(x-1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f(x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2-6x+21)+f(y2-8y)<0恒成立,可把问题转化为(x-3)2+(y-4)2<4,借助于的有关知识可求 【解析】 ∵函数y=f(x-1)的图象关于点(1,0)对称 ∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(-x)=-f(x) 又∵f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立 ∴(x2-6x+21)<-f(y2-8y)=f(8y-y2 )恒成立 ∴x2-6x+21<8y-y2 ∴(x-3)2+(y-4)2<4恒成立 设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点, 则x2+y2表示在半圆内任取一点与原点的距离的平方 结合圆的知识可知13<x2+y2<49 故选 C
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知点P的双曲线manfen5.com 满分网(a>0,b>0)右支上一点,F1、F2分别为双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知b>0,直线(b2+1)x+ay+2=O与直线x-b2y-1=O互相垂直,则ab的最小值等于( )
A.1
B.2
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D上有两个动点E、F,且EF=manfen5.com 满分网,则下列结论中错误的是( )
A.AC⊥BE
B.A1C⊥平面AEF
C.三棱锥A-BEF的体积为定值
D.异面直线AE、BF所成的角为定值
查看答案
由数字0,1,2,3,4,5组成的奇偶数字相间且无重复数字的六位数的个数是( )
A.72
B.60
C.48
D.12
查看答案
已知x,y满足条件manfen5.com 满分网则z=manfen5.com 满分网的最大值( )
A.3
B.manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.