已知函数
,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程
在区间
内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
考点分析:
相关试题推荐
在平面直角坐标系中,已知点
,点B在直线
上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)
2+y
2=1内切于△PRN,求△PRN的面积的最小值.
查看答案
已知函数f(x)=ax
2+bx(a≠0)的导函数f'(x)=-2x+7,数列{a
n}的前n项和为S
n,点P
n(n,S
n)(n∈N
*)均在函数y=f(x)的图象上.
(I)求数列{a
n}的通项公式及S
n的最大值;
(II)令
,其中n∈N
*,求{nb
n}的前n项和.
查看答案
多面体ABCD-A
1B
1C
1D
1的直观图,主视图,俯视图,左视图如图所示.
(1)求A
1A与平面ABCD所成角的正切值;
(2)求面AA
1D
1与面ABCD所成二面角的余弦值;
(3)求此多面体的体积.
查看答案
在全球金融风暴的背景下,某政府机构调查了某地工薪阶层10000人的月工资收入,并把调查结果画成如图所示的频率分布直方图,请将频率当作概率解答以下问题.
(I)为了了解工薪阶层对月工资收入的满意程度,要用分层抽样方法从所调查的10000人中抽出100人作电话询访,则在(2000,3500)(元)月工资收入段应抽出多少人?
(II)为刺激消费,政府计划给该地所有工薪阶层的人无偿发放购物消费券,方法如下:月工资不多于2000元的每人可领取5000元的消费券,月工资在(2000,3500)元间的每人可领取2000元的消费券,月工资多于3500元的每人可领取1000元的消费券.用随机变量ξ表示该地某一工薪阶层的人可领取的消费券金额,求ξ的分布列与期望值.
查看答案
如图为某交流电的电流I与时间t的关系式:I=Asin(ωt+ϕ)的一段图象.
(Ⅰ)根据图象写出I=Asin(ωt+ϕ)的解析式;
(Ⅱ)为了使I=Asin(ωt+ϕ)中t在任意1段
的时间内电流I能同时取得最大值与最小值,那么正整数ω的最小值是多少?
查看答案