满分5 > 高中数学试题 >

水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,...

水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为manfen5.com 满分网
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<i表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
(1)分段求出水库的蓄求量小于50时x的取值范围,注意实际问题x要取整. (2)一年内该水库的最大蓄水量肯定不在枯水期,则V(t)的最大值只能在(4,10)内达到,然后通过导数在给定区间上研究V(t)的最大值,最后注意作答. 【解析】 (Ⅰ)①当0<t≤10时,,化简得t2-14t+40>0, 解得t<4,或t>10,又0<t≤10,故0<t<4. ②当10<t≤12时,V(t)=4(t-10)(3t-41)+50<50,化简得(t-10)(3t-41)<0, 解得,又10<t≤12,故10<t≤12. 综合得0<t<4,或10<t≤12; 故知枯水期为1月,2月,3月,11月,12月共5个月. (Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)内达到. 由V′(t)=, 令V′(t)=0,解得t=8(t=-2舍去). 当t变化时,V′(t)与V(t)的变化情况如下表: 由上表,V(t)在t=8时取得最大值V(8)=8e2+50=108.32(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米
复制答案
考点分析:
相关试题推荐
已知圆C的圆心为C(m,0),m<3,半径为manfen5.com 满分网,圆C与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1,F2分别是椭圆的左、右焦点.
(1)求圆C的标准方程
(2)若点P的坐标为(4,4),试探究斜率为k的直线PF1与圆C能否相切,若能,求出椭圆E和直线PF1的方程;若不能,请说明理由.
查看答案
如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

manfen5.com 满分网 查看答案
某项实验研究需要一种高标准的产品,对这种产品要检测A、B两项技术指标,各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为manfen5.com 满分网,至少一项技术指标达标的概率为manfen5.com 满分网,按要求只有两项技术指标都达标的产品才能用于该实验(称为合格品),
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若manfen5.com 满分网,且manfen5.com 满分网,求a和c的值.
查看答案
(几何证明选讲选做题)如图,P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=manfen5.com 满分网,则∠EFD=    ,线段FD的长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.