满分5 > 高中数学试题 >

已知椭圆的离心率为,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点,且manfen5.com 满分网(O为坐标原点).
(1)求椭圆C的方程;
(2)过点manfen5.com 满分网且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
(1)设出P的坐标,利用|OP|的值求得x和y的关系式,同时利用求得x和y的另一关系式,进而求得c,通过椭圆的离心率求得a,最后利用a,b和c的关系求得b,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),则可利用韦达定理表示出x1+x2和x1x2,假设在y轴上存在定点M(0,m),满足题设,则可表示出,利用=0求得m的值. 【解析】 (1)设P(x,y),F1(-c,0),F2(c,0), 则由; 由得, 即. 所以c=1 又因为. 因此所求椭圆的方程为:. (2)动直线l的方程为:, 由得. 设A(x1,y1),B(x2,y2). 则. 假设在y轴上存在定点M(0,m),满足题设,则. = = = = 由假设得对于任意的恒成立, 即解得m=1. 因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点, 点M的坐标为(0,1)
复制答案
考点分析:
相关试题推荐
已知数列{an}满足a1=1,点在直线y=2x+1上,数列{bn}满足manfen5.com 满分网
(1)求bn+1an-(bn+1)an+1的值;
(2)求证:manfen5.com 满分网
查看答案
张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:manfen5.com 满分网,a,b为常数.当x=10万元时,y=19.2万元;当x=20万元时,y=35.7万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)
(1)求f(x)的解析式;
(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入)
查看答案
如图分别为三棱锥S-ABC的直观图与三视图,在直观图中,SA=SC,M、N分别为AB、SB的中点.
(1)求证:AC⊥SB;
(2)求二面角M-NC-B的余弦值.

manfen5.com 满分网 查看答案
“上海世博会”于2010年5月1日至10月31日在上海举行,世博会“中国馆•贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄,海纳百川的重要文化载体,为此,上海世博会事物协调局举办“中国2010年上海世博会”中国馆•贵宾厅艺术品方案征集活动,某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应证,假设代表中有中国画、书法、油画入选“中国馆•贵宾厅”的概率均为manfen5.com 满分网,陶艺入选“中国馆•贵宾厅”的概率为manfen5.com 满分网
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆•贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆•贵宾厅”的作品件数为随机变量ξ,求ξ的数学期望.
查看答案
已知向量manfen5.com 满分网,定义manfen5.com 满分网
(1)求函数f(x)的单调递减区间;
(2)若函数y=f(x+θ)(0<θ<π)为偶函数,求θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.