已知椭圆
的离心率为
,其左、右焦点分别为F
1,F
2,点P(x
,y
)是坐标平面内一点,且
(O为坐标原点).
(1)求椭圆C的方程;
(2)过点
且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
考点分析:
相关试题推荐
已知数列{a
n}满足a
1=1,点在直线y=2x+1上,数列{b
n}满足
(1)求b
n+1a
n-(b
n+1)a
n+1的值;
(2)求证:
查看答案
张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:
,a,b为常数.当x=10万元时,y=19.2万元;当x=20万元时,y=35.7万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)
(1)求f(x)的解析式;
(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入)
查看答案
如图分别为三棱锥S-ABC的直观图与三视图,在直观图中,SA=SC,M、N分别为AB、SB的中点.
(1)求证:AC⊥SB;
(2)求二面角M-NC-B的余弦值.
查看答案
“上海世博会”于2010年5月1日至10月31日在上海举行,世博会“中国馆•贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄,海纳百川的重要文化载体,为此,上海世博会事物协调局举办“中国2010年上海世博会”中国馆•贵宾厅艺术品方案征集活动,某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应证,假设代表中有中国画、书法、油画入选“中国馆•贵宾厅”的概率均为
,陶艺入选“中国馆•贵宾厅”的概率为
.
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆•贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆•贵宾厅”的作品件数为随机变量ξ,求ξ的数学期望.
查看答案
已知向量
,定义
.
(1)求函数f(x)的单调递减区间;
(2)若函数y=f(x+θ)(0<θ<π)为偶函数,求θ的值.
查看答案