满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,manfen5.com 满分网,若DE∥面PAB,求λ的值.

manfen5.com 满分网
(1)根据余弦定理求出DC的长,而BC2=DB2+DC2,根据勾股定理可得BD⊥DC,而PD⊥面ABCD,则BD⊥PD,PD∩CD=D,根据线面垂直判定定理可知BD⊥面PDC,而PC在面PDC内,根据线面垂直的性质可知BD⊥PC; (2)在底面ABCD内过D作直线DF∥AB,交BC于F,分别以DA、DF、DP为x、y、z轴建立空间坐标系,根据(1)知BD⊥面PDC,则就是面PDC的法向量,设AB与面PDC所成角大小为θ,利用向量的夹角公式求出θ即可. (3)先求出向量,,,,,设=(x,y,z)为面PAB的法向量,根据•=0,•=0,求出,再根据DE∥面PAB,则•=0求出λ即可. 【解析】 (1)∵∠DAB=90°,AD=1,AB=,∴BD=2,∠ABD=30°, ∵BC∥AD∴∠DBC=60°,BC=4,由余弦定理得DC=2,(3分) BC2=DB2+DC2,∴BD⊥DC, ∵PD⊥面ABCD,∴BD⊥PD,PD∩CD=D,∴BD⊥面PDC, ∵PC在面PDC内,∴BD⊥PC(5分) (2)在底面ABCD内过D作直线DF∥AB,交BC于F, 分别以DA、DF、DP为x、y、z轴建立如图空间坐标系,(6分) 由(1)知BD⊥面PDC,∴就是面PDC的法向量,(7分) A(1,0,0),B(1,,0),P(0,0,a)=(0,,0),=(1,,0),(8分) 设AB与面PDC所成角大小为θ,cosθ==,(9分) ∵θ∈(0,)∴θ=(10分) (3)在(2)中的空间坐标系中A、(1,0,0),B、(1,,0),P(0,0,a)C、(-3,,0),(11分) =(-3,,-a),=(-3λ,λ,-aλ), =+=(0,0,a)+(-3λ,λ,-aλ)=(-3λ,λ,a-aλ)(12分) =(0,,0),=(1,0,-a), 设=(x,y,z)为面PAB的法向量, 由•=0, 得y=0,由•=0,得x-az=0,取x=a,z=1,=(a,0,1),(14分) 由D、E∥面PAB得:⊥,∴•=0,-3aλ+a-aλ=0,∴λ=(15分)
复制答案
考点分析:
相关试题推荐
某商场“五.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号.顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会.
(Ⅰ)求该顾客摸三次球被停止的概率;
(Ⅱ)设ξ(元)为该顾客摸球停止时所得的奖金数,求ξ的分布列及数学期望Eξ.
查看答案
设函数manfen5.com 满分网,已知manfen5.com 满分网时f(x)取到最大值2.
(Ⅰ)求a的值;
(Ⅱ)设y=g(x)与y=f(x)的图象关于直线manfen5.com 满分网对称,求满足x∈(0,π)且f(x)-2g(x)=3的所有x的值.
查看答案
给机器人输入一个指令(m,2m+48)(m>0),则机器人在坐标平面上先面向x轴正方向行走距离m,接着原地逆时针旋转90再面向y轴正方向行走距离2m+48,这样就完成一次操作.机器人的安全活动区域是:manfen5.com 满分网,开始时机器人在函数f(x)=2x图象上的点P处且面向x轴正方向,经过一次操作后机器人落在安全区域内的一点Q处,且点Q恰好也在函数f(x)图象上,则向量manfen5.com 满分网的坐标是    查看答案
设x,y满足条件manfen5.com 满分网,若目标函数z=ax+y(其中a为常数)仅在(3,1)处取得最大值,则a的取值范围是    查看答案
给出下列等式:
manfen5.com 满分网
经过观察、归纳,写出第n(n∈N*)个等式为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.