满分5 > 高中数学试题 >

已知四棱锥P-ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,...

已知四棱锥P-ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,
∠CDA=∠BAD=90°,manfen5.com 满分网,M,N分别是PD,PB的中点.
(1)求证:MQ∥平面PCB;
(2)求截面MCN与底面ABCD所成二面角的大小;
(3)求点A到平面MCN的距离.

manfen5.com 满分网
此类题一般有两种解法,一种是利用空间向量方法来证明,一种是用立体几何中线面位置关系进行证明,本题提供两种解法 向量法:对于(1)求证:MQ∥平面PCB,可求出线的方向向量与面的法向量,如果两者的内积为0则说明线面平行 对于(2)求截面MCN与底面ABCD所成二面角的大小,求出两个平面的法向量,然后根据根据二面角的正弦与法向量的数量积的关系,求解; 对于(3)求点A到平面MCN的距离,求出平面上任一点与A连线所对应的向量,求这个向量在该平面的法向量上的投影即可,此法求点到面的距离甚为巧妙. 几何法:(1)求证MQ∥平面PCB,用线面平行的判定定理证明即可; (2)求截面MCN与底面ABCD所成二面角的大小,先在图形中作出二面角的平面角,再证明其是二面角的平面角,然后根据题设中的条件求出平面角的三角函数值,一般要在一个三角形中求解函数值. (3)求点A到平面MCN的距离,须先作出点A在面上的垂线段,然后在三角形中求出此线段的长度即可. 【解析】 法一向量法: 以A为原点,以AD,AB,AP分别为x,y,z建立空间直角坐标系O-xyz, 由,PA=4PQ=4,M,N分别是PD,PB的中点, 可得:, ∴, 设平面的PBC的法向量为, 则有: 令z=1,则,(3分) ∴, 又MQ⊄平面PCB,∴MQ∥平面PCB; (2)设平面的MCN的法向量为,又 则有: 令z=1,则, 又为平面ABCD的法向量, ∴,又截面MCN与底面ABCD所成二面角为锐二面角, ∴截面MCN与底面ABCD所成二面角的大小为, (3)∵,∴所求的距离; 法二,几何法: (1)取AP的中点E,连接ED,则ED∥CN,依题有Q为EP的中点,所以MQ∥ED,所以MQ∥CN, 又MQ⊄平面PCB,CN⊊平面PCB,∴MQ∥平面PCB (2)易证:平面MEN∥底面ABCD,所以截面MCN与平面MEN所成的二面角即为平面MCN与底面ABCD所成的二面角, 因为PA⊥平面ABCD,所以PA⊥平面MEN,过E做EF⊥MN,垂足为F,连接QF, 则由三垂线定理可知QF⊥MN, 由(1)可知M,C,N,Q四点共面所以∠QFE为截面MCN与平面MEN所成的二面角的平面角,, 所以:, 所以:; (3)因为EP的中点为Q,且平面MCN与PA交于点Q,所以点A到平面MCN的距离是点E到平面MCN的距离的3倍, 由(2)知:MN⊥平面QEF,则平面MCNQ⊥平面QEF且交线为QF,作EH⊥QF,垂足为H,则EH⊥平面MCNQ,故EH即为点E到平面MCN的距离. .
复制答案
考点分析:
相关试题推荐
某校高三某班在一次体育课内进行定点投篮赛,A、B为两个定点投篮位置,在A处投中一球得2分,在B处投中一球得3分.学生甲在A和B处投中的概率分别是manfen5.com 满分网manfen5.com 满分网,且在A、B两处投中与否相互独立.
(1)若学生甲最多有2次投篮机会,其规则是:按先A后B的次序投篮.只有首先在A处投中后才能到B处进行第二次投篮.否则中止投篮,试求他投篮所得积分ξ的分布列和期望Eξ;
(2)若学生甲有5次投篮机会,其规则是:投篮点自由选择,共投篮5次,投满5次后中止投篮,求投满5次时的积分为9分的概率.
查看答案
已知O为坐标原点,manfen5.com 满分网其中x∈R,a为常数,
设函数manfen5.com 满分网
(Ⅰ)求函数y=f(x)的表达式和对称轴方程;
(Ⅱ)若角C为△ABC的三个内角中的最大角,且y=f(C)的最小值为0,求a的值.
查看答案
如图,直线l⊥平面α,垂足为O,已知长方体ABCD-A1B1C1D1中,AA1=5,AB=6,AD=8.该长方体做符合以下条件的自由运动:(1)A∈l;(2)C∈α,则C1、O两点间的最大距离为   
manfen5.com 满分网 查看答案
对于函数f(x)=manfen5.com 满分网+(3-a)|x|+b,若f(x)有六个不同的单调区间,则a的取值范围为    查看答案
直线manfen5.com 满分网与抛物线y2=4x相交于A、B两点,与x轴相交于点F,若manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.