满分5 > 高中数学试题 >

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F...

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=manfen5.com 满分网的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

manfen5.com 满分网
(1)当m=1时,y2=4x,则F1(-1,0),F2(1,0).设椭圆方程为=1(a>b>0),由题设条件知c=1,a=2,b2=3,由此可知椭圆C2方程为=1. (2)因为c=m,e==,则a=2m,b2=3m2,设椭圆方程为,由,得3x2+16mx-12m2=0,得xP=代入抛物线方程得P(,),由此得m=3,由此可求出△MPQ面积的最大值. 【解析】 (1)当m=1时,y2=4x,则F1(-1,0),F2(1,0) 设椭圆方程为=1(a>b>0),则c=1,又e==,所以a=2,b2=3 所以椭圆C2方程为=1(4分) (2)因为c=m,e==,则a=2m,b2=3m2, 设椭圆方程为 由,得3x2+16mx-12m2=0(6分) 即(x+6m)(3x-2m)=0,得xP=代入抛物线方程得yP=m, 即P(,) |PF2|=xP+m=,|PF1|=2a-|PF2|=4m-=,|F1F2|=2m=, 因为△PF1F2的边长恰好是三个连续的自然数,所以m=3(8分) 此时抛物线方程为y2=12x,P(2,2),直线PQ方程为:y=-2(x-3). 联立,得2x2-13x+18=0,即(x-2)(2x-9)=0, 所以xQ=,代入抛物线方程得yQ=-3,即Q(,-3) ∴|PQ|==. 设M(,t)到直线PQ的距离为d,t∈(-3,2) 则d==|(t+)2-|(10分) 当t=-时,dmax=•=, 即△MPQ面积的最大值为××=.(12分)
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-中,已知CC1=BB1=2,BC=1,manfen5.com 满分网,AB⊥侧面BB1C1C,
(1)求直线C1B与底面ABC所成角正切值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网 查看答案
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员
manfen5.com 满分网
乙运动员
manfen5.com 满分网
若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
查看答案
(1)由“若a,b,c∈R,则(ab)c=a(bc)”类比,若“manfen5.com 满分网为三个向量,则manfen5.com 满分网
(2)在数列{an}中,a1=0,an+1=2an+2,猜想an=2n-2
(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四面的面积”
(4)已知(2-x)8=a+a1x+a2x2+…+a8x8,则a1+a2+…+a8=256
上述四个推理中,得出的结论正确的是    (写出所有正确结论的序号) 查看答案
一个几何体的三视图如图所示,其中主视图中△ABC是边长为2的正三角形,俯视图为正六边形,则该几何体的体积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.