满分5 > 高中数学试题 >

如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=A...

如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4,
(1)求PF的长度.
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.

manfen5.com 满分网
(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系,结合题中条件弧长AE等于弧长AC可得∠CDE=∠AOC,从而得到△PFD∽△PCO,最后再结合割线定理即可求得PF的长度; (2)根据圆F与圆O内切,求得圆F的半径为r,由PT为圆F的切线结合割线定理即可求得线段PT的长度. 【解析】 (1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系 结合题中条件弧长AE等于弧长AC可得∠CDE=∠AOC, 又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP, 从而∠PFD=∠OCP,故△PFD∽△PCO,∴ 由割线定理知PC•PD=PA•PB=12,故. (2)若圆F与圆O内切,设圆F的半径为r,因为OF=2-r=1即r=1 所以OB是圆F的直径,且过P点圆F的切线为PT 则PT2=PB•PO=2×4=8,即
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若manfen5.com 满分网且关于x的方程manfen5.com 满分网在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*用数学归纳法证明:an≤2n-1
查看答案
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=manfen5.com 满分网的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

manfen5.com 满分网 查看答案
如图,在三棱柱ABC-中,已知CC1=BB1=2,BC=1,manfen5.com 满分网,AB⊥侧面BB1C1C,
(1)求直线C1B与底面ABC所成角正切值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网 查看答案
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员
manfen5.com 满分网
乙运动员
manfen5.com 满分网
若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.