满分5 > 高中数学试题 >

某单位进行这样的描球游戏:甲箱子里装有3个白球,2个红球,乙箱子里装有1个白球,...

某单位进行这样的描球游戏:甲箱子里装有3个白球,2个红球,乙箱子里装有1个白球,2个红球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中①摸出3个白球的概率;②获奖的概率;
(2)求在2次游戏中获奖次数X的分布列及数学期望EX.
(1)①求出基本事件总数,计算摸出3个白球事件数,利用古典概型公式,代入数据得到结果;②获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据①求出摸出2个白球的概率,再相加即可求得结果; (2)确定在2次游戏中获奖次数X的取值是0、1、2,求出相应的概率,即可写出分布列,求出数学期望. 【解析】 (1)①设“在一次游戏中摸出i个白球”为事件Ai(i=,0,1,2,3),则 P(A3)=•= ②设“在一次游戏中获奖”为事件B,则B=A2∪A3,又P(A2)=•+•=且A2、A3互斥,所以P(B)=P(A2)+P(A3)=+= (2)由题意可知X的所有可能取值为0,1,2. P(X=0)=(1-2=,P(X=1)=C21×(1-)=, P(X=2)=(2=, 所以X的分布列是 X的数学期望E(X)=0×+1×+2×=.
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(1)求数列{an}的通项公式;
(2)设数列{manfen5.com 满分网}的前n项和为Mn,求证:manfen5.com 满分网≤Mnmanfen5.com 满分网
查看答案
关于manfen5.com 满分网有以下命题:
①若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②f(x)图象与manfen5.com 满分网图象相同;
③f(x)在区间manfen5.com 满分网上是减函数;
④f(x)图象关于点manfen5.com 满分网对称.
其中正确的命题是    查看答案
已知曲线f(x)=alnx+bx+1在点(1,f(1))处的切线斜率为-2,且x=manfen5.com 满分网是y=f(x)的极值点,则a-b=    查看答案
如图,正四面体ABCD的外接球球心为D,E是BC的中点,则直线OE与平面BCD所成角的正切值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.