满分5 > 高中数学试题 >

设,g(x)=x3-x2-3. (1)当a=2时,求曲线y=f(x)在x=1处的...

manfen5.com 满分网,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的manfen5.com 满分网,都有f(s)≥g(t)成立,求实数a的取值范围.
(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,最后用直线的斜截式表示即可; (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]max≥M,先求导数,研究函数的极值点,通过比较与端点的大小从而确定出最大值和最小值,从而求出[g(x1)-g(x2)]max,求出M的范围; (3)当时,恒成立等价于a≥x-x2lnx恒成立,令h(x)=x-x2lnx,利用导数研究h(x)的最大值即可求出参数a的范围. 【解析】 (1)当a=2时,,,f(1)=2,f'(1)=-1, 所以曲线y=f(x)在x=1处的切线方程为y=-x+3;(4分) (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立 等价于:[g(x1)-g(x2)]max≥M, 考察g(x)=x3-x2-3,, 由上表可知:, , 所以满足条件的最大整数M=4;(8分) (3)当时,恒成立 等价于a≥x-x2lnx恒成立, 记h(x)=x-x2lnx,h'(x)=1-2xlnx-x,h'(1)=0. 记m(x)=1-2xlnx-x,m'(x)=-3-2lnx, 由于,m'(x)=-3-2lnx<0, 所以m(x)=h'(x)=1-2xlnx-x在上递减, 当时,h'(x)>0,x∈(1,2]时,h'(x)<0, 即函数h(x)=x-x2lnx在区间上递增,在区间(1,2]上递减, 所以h(x)max=h(1)=1,所以a≥1.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
查看答案
某单位进行这样的描球游戏:甲箱子里装有3个白球,2个红球,乙箱子里装有1个白球,2个红球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中①摸出3个白球的概率;②获奖的概率;
(2)求在2次游戏中获奖次数X的分布列及数学期望EX.
查看答案
已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(1)求数列{an}的通项公式;
(2)设数列{manfen5.com 满分网}的前n项和为Mn,求证:manfen5.com 满分网≤Mnmanfen5.com 满分网
查看答案
关于manfen5.com 满分网有以下命题:
①若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②f(x)图象与manfen5.com 满分网图象相同;
③f(x)在区间manfen5.com 满分网上是减函数;
④f(x)图象关于点manfen5.com 满分网对称.
其中正确的命题是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.