根据{an}为等比数列可知a1a3=a22,由数列{an+1}也是等比数列可知(a1+1)(a3+1)=(a2+1)2,两式联立可得a1=a3,推断{an}是常数列,每一项是2,进而可得Sn.
【解析】
{an}为等比数列,则a1a3=a22
数列{an+1}也是等比数列,
则(a1+1)(a3+1)=(a2+1)2
得:a1+a3=2a2
∴(a1+a3)2=4(a2)2=4(a1a3)
∴(a1-a3)2=0
∴a1=a3
即 {an}是常数列,an=a1=2
{an+1}也是常数列,每一项都是3
故 Sn=2n
故答案选A