已知数列{a
n}满足a
1=0,a
2=2,且对任意m、n∈N
*都有a
2m-1+a
2n-1=2a
m+n-1+2(m-n)
2(1)求a
3,a
5;
(2)设b
n=a
2n+1-a
2n-1(n∈N
*),证明:{b
n}是等差数列;
(3)设c
n=(a
n+1-a
n)q
n-1(q≠0,n∈N
*),求数列{c
n}的前n项和S
n.
考点分析:
相关试题推荐
在直角坐标系xOy中,直线l与x轴正半轴和y轴正半轴分别相交于A,B两点,△AOB的内切圆为⊙M.
(1)如果⊙M半径为1,l与⊙M切于点
,求直线l的方程;
(2)如果⊙M半径为1,证明当△AOB的面积、周长最小时,此时△AOB为同一三角形;
(3)如果l的方程为
,P为⊙M上任一点,求PA
2+PB
2+PO
2的最值.
查看答案
如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,
<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3
);赛道的中间部分为
千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
.
(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.
查看答案
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(I)求证:AO⊥平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离.
查看答案
在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若
=-
,b=
,求a+c的值;
(2)求2sinA-sinC的取值范围.
查看答案
定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,如:[1.5]=1,[-1.3]=-2,当x∈[0,n)(n∈N
*)时,设函数f(x)的值域为A,记集合A中的元素个数为a
n,则式子[
]的最小值为
.
查看答案