满分5 >
高中数学试题 >
不等式log2≥1的解集为( ) A.(-∞,-1] B.[-1,+∞) C.[...
不等式log
2≥1的解集为( )
A.(-∞,-1]
B.[-1,+∞)
C.[-1,0)
D.(-∞,-1]∪(0,+∞)
考点分析:
相关试题推荐
对于函数y=f(x),x∈(0,+∞),如果a,b,c是一个三角形的三边长,那么f(a),f(b),f(c)也是一个三角形的三边长,则称函数f(x)为“保三角形函数”.
对于函数y=g(x),x∈[0,+∞),如果a,b,c是任意的非负实数,都有g(a),g(b),g(c)是一个三角形的三边长,则称函数g(x)为“恒三角形函数”.
(Ⅰ)判断三个函数“f
1(x)=x,f
2(x)=
,f
3(x)=3x
2(定义域均为x∈(0,+∞))”中,哪些是“保三角形函数”?请说明理由;
(Ⅱ)若函数
,x∈[{0,+∞})是“恒三角形函数”,试求实数k的取值范围;
(Ⅲ)如果函数h(x)是定义在(0,+∞)上的周期函数,且值域也为(0,+∞),试证明:h(x)既不是“恒三角形函数”,也不是“保三角形函数”.
查看答案
已知数列{a
n}满足a
1=0,a
2=2,且对任意m、n∈N
*都有a
2m-1+a
2n-1=2a
m+n-1+2(m-n)
2(1)求a
3,a
5;
(2)设b
n=a
2n+1-a
2n-1(n∈N
*),证明:{b
n}是等差数列;
(3)设c
n=(a
n+1-a
n)q
n-1(q≠0,n∈N
*),求数列{c
n}的前n项和S
n.
查看答案
在直角坐标系xOy中,直线l与x轴正半轴和y轴正半轴分别相交于A,B两点,△AOB的内切圆为⊙M.
(1)如果⊙M半径为1,l与⊙M切于点
,求直线l的方程;
(2)如果⊙M半径为1,证明当△AOB的面积、周长最小时,此时△AOB为同一三角形;
(3)如果l的方程为
,P为⊙M上任一点,求PA
2+PB
2+PO
2的最值.
查看答案
如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,
<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3
);赛道的中间部分为
千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
.
(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.
查看答案
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(I)求证:AO⊥平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离.
查看答案