满分5 > 高中数学试题 >

已知二次函数f(x)=(x-1)2,直线g(x)=4(x-1),数列{an}满足...

已知二次函数f(x)=(x-1)2,直线g(x)=4(x-1),数列{an}满足,(an+1-an)g(an)+f(an)=0
(n∈N*).(1)求数列{an}的通项公式;(2)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.
(1)先根据f(x)和g(x)的解析式化简,(an+1-an)g(an)+f(an)=0),得(an+1-an)•4(an-1)+(an-1)2=0再用构造法求出数列{an}的通项公式. (2)根据f(x)和g(x)的解析式及数列{an}的通项公式化简bn,再用二次函数求极值的方法求出数列{bn}的最值及相应的n. 【解析】 (1)∵(an+1-an)•4(an-1)+(an-1)2=0∴(an-1)(4an+1-3an-1)=0∵a1=2, ∴an≠1,4an+1-3an-1=0∴数列an-1是首项为1,公比为的等比数列 ∴ (2)bn=3(an-1)2-4(an+1-1)= 令则∵n∈N*, ∴u的值分别为,经比较距最近, ∴当n=3时,bn有最小值是,当n=1时,bn有最大值是0.
复制答案
考点分析:
相关试题推荐
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为manfen5.com 满分网的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.
查看答案
如图,四棱锥P-ABCD的底面为菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,
PA=manfen5.com 满分网,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立.如果存在,求出MC的长;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:
(I)甲试跳三次,第三次才能成功的概率;
(II)甲、乙两人在第一次试跳中至少有一人成功的概率;
(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
查看答案
已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2-(b-c)2和sinB+sinC=manfen5.com 满分网(a,b,c为角A,B,C所对的边)
(1)求sinA;
(2)求△ABC面积的最大值.
查看答案
设D为△ABC的边AB上一点,P为△ABC内一点,且满足manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.