满分5 > 高中数学试题 >

若函数y=f(x)是定义在R上的可导函数,则f′(x)=0是x为函数y=f(x)...

若函数y=f(x)是定义在R上的可导函数,则f′(x)=0是x为函数y=f(x)的极值点的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
结合极值的定义可知必要性成立,而充分性中除了要求f′(x)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立. 【解析】 如y=x3,y′=3x2,y′|x=0=0,但x=0不是函数的极值点. 若函数在x取得极值,由定义可知f′(x)=0 所以f′(x)=0是x为函数y=f(x)的极值点的必要不充分条件 故选B
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知a≠0且a∈R,函数manfen5.com 满分网的最小值为g(a).
(1)求函数g(a)的表达式;
(2)求函数g(a)的值域;
(3)找出所有使manfen5.com 满分网成立的实数a.
查看答案
已知二次函数f(x)=(x-1)2,直线g(x)=4(x-1),数列{an}满足,(an+1-an)g(an)+f(an)=0
(n∈N*).(1)求数列{an}的通项公式;(2)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.
查看答案
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为manfen5.com 满分网的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.
查看答案
如图,四棱锥P-ABCD的底面为菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,
PA=manfen5.com 满分网,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立.如果存在,求出MC的长;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.