(1)先对关系式an+1=an+2n+1整理可得到)(an+1-2n+1)-(an-2n)=an+1-an-2n=1,即数列{an-2n}为等差数列,
(2)根据(1)可求出数列{an-2n}的通项公式,即可得到数列{an}的通项公式,根据bn=log2(an+1-n),可得到bn的表达式,设f(n)=…(1+)×,分析可得f(n)的最小值,结合题意即可得答案.
【解析】
(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=…(1+)×,(n≥2)
则f(n+1)=…(1+)×(1+)×,
两式相除可得=(1+)×=>1,
则有f(n)>f(n-1)>f(n-2)>…>f(2)=,
要使…对一切n∈N*且n≥2恒成立,
必有k<;
故k的取值范围是k<.